0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 CpxWeightedTrsRenamingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxWeightedTrs
↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CpxTypedWeightedTrs
↳7 CompletionProof (UPPER BOUND(ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳10 CpxTypedWeightedCompleteTrs
↳11 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳12 CpxRNTS
↳13 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 681 ms)
↳18 CpxRNTS
↳19 IntTrsBoundProof (UPPER BOUND(ID), 146 ms)
↳20 CpxRNTS
↳21 FinalProof (⇔, 0 ms)
↳22 BOUNDS(1, n^1)
+(0, y) → y
+(s(x), 0) → s(x)
+(s(x), s(y)) → s(+(s(x), +(y, 0)))
+(0, y) → y [1]
+(s(x), 0) → s(x) [1]
+(s(x), s(y)) → s(+(s(x), +(y, 0))) [1]
+ => plus |
plus(0, y) → y [1]
plus(s(x), 0) → s(x) [1]
plus(s(x), s(y)) → s(plus(s(x), plus(y, 0))) [1]
plus(0, y) → y [1]
plus(s(x), 0) → s(x) [1]
plus(s(x), s(y)) → s(plus(s(x), plus(y, 0))) [1]
plus :: 0:s → 0:s → 0:s 0 :: 0:s s :: 0:s → 0:s |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
none
(c) The following functions are completely defined:
plus
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
0 => 0
plus(z, z') -{ 1 }→ y :|: y >= 0, z = 0, z' = y
plus(z, z') -{ 1 }→ 1 + x :|: x >= 0, z = 1 + x, z' = 0
plus(z, z') -{ 2 }→ 1 + plus(1 + x, 0) :|: x >= 0, z' = 1 + 0, z = 1 + x
plus(z, z') -{ 2 }→ 1 + plus(1 + x, 1 + x') :|: z' = 1 + (1 + x'), x >= 0, x' >= 0, z = 1 + x
plus(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
plus(z, z') -{ 2 }→ 1 + plus(1 + (z - 1), 0) :|: z - 1 >= 0, z' = 1 + 0
plus(z, z') -{ 2 }→ 1 + plus(1 + (z - 1), 1 + (z' - 2)) :|: z - 1 >= 0, z' - 2 >= 0
plus(z, z') -{ 1 }→ 1 + (z - 1) :|: z - 1 >= 0, z' = 0
{ plus } |
plus(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
plus(z, z') -{ 2 }→ 1 + plus(1 + (z - 1), 0) :|: z - 1 >= 0, z' = 1 + 0
plus(z, z') -{ 2 }→ 1 + plus(1 + (z - 1), 1 + (z' - 2)) :|: z - 1 >= 0, z' - 2 >= 0
plus(z, z') -{ 1 }→ 1 + (z - 1) :|: z - 1 >= 0, z' = 0
plus(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
plus(z, z') -{ 2 }→ 1 + plus(1 + (z - 1), 0) :|: z - 1 >= 0, z' = 1 + 0
plus(z, z') -{ 2 }→ 1 + plus(1 + (z - 1), 1 + (z' - 2)) :|: z - 1 >= 0, z' - 2 >= 0
plus(z, z') -{ 1 }→ 1 + (z - 1) :|: z - 1 >= 0, z' = 0
plus: runtime: ?, size: O(n1) [z + z'] |
plus(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
plus(z, z') -{ 2 }→ 1 + plus(1 + (z - 1), 0) :|: z - 1 >= 0, z' = 1 + 0
plus(z, z') -{ 2 }→ 1 + plus(1 + (z - 1), 1 + (z' - 2)) :|: z - 1 >= 0, z' - 2 >= 0
plus(z, z') -{ 1 }→ 1 + (z - 1) :|: z - 1 >= 0, z' = 0
plus: runtime: O(n1) [1 + 2·z'], size: O(n1) [z + z'] |